ppr5.cn-久久久久成人片免费观看蜜芽,亚洲国产精品热久久,精品人妻VA出轨中文字幕,无码人妻精品一区二区三区66

歡迎光臨安科瑞電氣股份有限公司網站!
誠信促進發展,實力鑄就品牌
服務熱線:

15000352989

產品分類

Product category

技術文章 / article 您的位置:網站首頁 > 技術文章 > 淺述城市綜合管廊消防標準及火災研究

淺述城市綜合管廊消防標準及火災研究

更新時間: 2023-11-21   點擊次數: 346次

摘要:為系統把握當前消防標準化及火災研究工作的成果及其不足,簡述城市綜合管廊基本概念,回顧國內外綜合管廊發展歷程,分析綜合管廊火災危險性,論述綜合管廊火災與交通隧道火災的區別;從基礎問題和實踐應用2個層面,綜述綜合管廊火災研究的成果和總體進展;總結國內外消防設計規范要求的差異和國內標準的發展情況,全面展望未來綜合管廊火災研究方向。研究結果表明:基礎問題的研究方法以借鑒交通隧道領域為主,研究內容有局限性,研究課題間聯系不緊密;實踐應用研究局限于工程經驗探討,消防規范普遍缺乏專項標準。

關鍵詞:城市綜合管廊;消防標準;火災研究;消防設計;交通隧道

0引言

城市綜合管廊作為一類集約使用的新型隧道,提供了市政管線可持續發展的新途徑,但其潛在的火災危害也不容小覷。近年來發生了多起綜合管廊火災案例,如日本世田谷電纜管廊因用火不慎釀成火災;韓國1994—1997年發生4起線纜故障短路引發管廊火災事故。

公路隧道、地鐵隧道等傳統交通隧道火災研究已取得一些系統性成果。BEARD等*早從工程實踐的角度總結了火災探測和各類主、被動防火策略的問題、要求、當前科學技術發展,提出了交通隧道火災下的人員應急措施、消防安全管理方案和工程應急程序的建議。INGASON等著重于梳理隧道火災問題的理論科學進展(物理現象和動力學基礎),同時引申出相應的預測方法指南。這2本專著為隧道火災研究與消防實踐提供了詳實的指導,但都未涉及綜合管廊火災問題。當前對綜合管廊這類新型隧道火災的研究仍處于起步階段。早期管廊火災的研究內容局限于工程經驗探討,近年來,開始利用試驗、仿真等科學手段進行論證,探索相應的火災規律,但相比成熟系統的交通隧道火災研究還不夠完善,未曾明確綜合管廊與交通隧道兩者的差異帶來的火災問題和研究方法的區別。張書豪綜述了綜合管廊燃氣火災和爆炸安全的相關研究成果,但是缺乏對綜合管廊普遍發生電纜火災的研究成果的歸納和探討。

鑒于此,首先從綜合管廊基本概念、發展歷程和火災危險性3個角度簡述本文研究對象,接著通過對比交通隧道火災問題,突出綜合管廊火災問題的特殊性。然后從基礎問題和實踐應用2個層面,綜述綜合管廊火災研究的*新成果和總體進展;總結國內外消防設計的規范要求與發展情況。*后提出當前綜合管廊火災研究的不足,展望未來的研究方向,以期為管廊消防規范體系建設、開展實踐應用研究,以及保障城市生命線長治久安提供參考。

1城市綜合管廊的概念

綜合管廊定義為建于城市地下用于容納2類及以上城市工程管線的構筑物及附屬設施,一般容納的市政管線有供水管道(包括給水管道、中水管道和消防管道)、排水管道(包括雨水管道和污水管道)、燃氣管線、電力電纜、通信電纜和熱力管道等。

根據管廊收容的管線等級、數量、輸送性質,可將其分為干線綜合管廊、支線綜合管廊和纜線管廊。根據不同工程條件,綜合管廊可以采用矩形斷面、圓形斷面和馬蹄形斷面等形式。綜合管廊內容納的管線具有不同的火災危險性,通常將不同危險等級的管線分開收容在相互獨立的艙室,采用具有一定耐火極限的不燃性結構分隔不同的艙室。因此,也可根據艙室數量分為單艙綜合管廊、雙艙綜合管廊和多艙綜合管廊。

2城市綜合管廊的發展

建設綜合管廊來整合市政設施*早可追溯到羅馬帝國時代,當時的工程師將給水管線和污水系統合并設置。該設計理念此后被忽視,直到19世紀法國將巴黎的市政設施改造成可容人通過的隧道,同時容納多種管線,現代管廊系統的雛形由此誕生。此后綜合管廊在世界各國得到飛速的發展。張竹村梳理了世界綜合管廊發展史后總結出3個階段及其特點,我國綜合管廊建設也經歷了4個階段。

借鑒綜合管廊在世界各國近200年的發展經驗,我國當前穩步推進管廊建設的啟示包括:充分借鑒管廊發展的歐洲模式和日本模式,促進綠色發展;完善法律法規體系,規范管廊建設和改造;統籌管廊建設時序和地域,實現地上地下統一規劃;推進新工藝(大數據、物聯網、建筑信息模型、地理信息系統、機器人及智慧運維平臺)的開發和使用;實現規劃、建設、運維全過程綜合化管理。

3城市綜合管廊的火災危險性

根據綜合管廊災害事故統計,地震和火災是其面臨的2大主要災害。潛在的火災危險類型主要有電力電纜火災、燃氣火災和污水管道火災等。基于綜合管廊火災案例研究,發現綜合管廊內起火原因多樣,通常有電氣火災(短路、接觸不良、線路超負荷和漏電)、明火火災(人為入侵、非標準化作業)和可燃物泄漏火災。綜合管廊火災特點為:可燃物種類多,數量大,燃燒時間長;空間受限,燃燒過程復雜;火場環境惡劣,撲救困難;影響范圍廣。

4城市綜合管廊火災研究進展

4.1基礎問題研究

4.1.1綜合管廊火災問題的特殊性

近年來,針對綜合管廊火災問題的研究剛起步,而之前國內外學者已在相關的電力電纜燃燒特性及行為和隧道火災動力學等方向開展了豐富的研究,取得了豐碩的研究成果。對隧道火災的研究,著重于交通隧道火災領域,其中封堵隧道火災這類場景與綜合管廊存在相似之處,但綜合管廊作為一類特殊的市政隧道,與隧道在以下方面仍有所區別。

1)管廊結構。綜合管廊的斷面尺寸相比公路隧道通常更小,我國每個艙室根據規范劃分為多個不超過200m的防火分區,因此,綜合管廊內會存在封堵端墻。

2)可燃物種類及布置。管廊內可燃物如高壓電纜和通信線纜,一般自頂棚至地面以一定間距成層布置,容易誘發強羽流撞擊頂棚的熱物理現象以及蔓延擴大。交通隧道內的交通工具發生火災,一般更貼近地面。

3)通風排煙設計。交通隧道排煙設計是通過持續高效地控煙、排煙協助受困人員、車輛進行緊急疏散。而綜合管廊排煙的首要目標是保障管線和結構安全,輔助消防撲救工作。目前綜合管廊的通風排煙設計有事故中排煙模式和事故后排煙模式。

4.1.2綜合管廊火災研究現狀

近2年,在國內外研究者的持續推動下,深層次研究自動滅火系統、通風排煙、探測報警、燃氣爆炸及基礎火災動力學。

自動滅火系統的研究基本以數值模擬研究為主,實體試驗作為驗證。細水霧系統優異的滅火效果和避免2次污染的優勢得到了理論和試驗的多次論證。需要強調的是,火災時保持通風會影響細水霧系統滅火能力,促進火源區的空氣補充。細水霧系統滅火時也會使管廊頂棚煙氣濃度增加,降低煙氣層高度,需避免強行搶修。

事故中通風模式研究中,劉浩男等認為,管廊火災臨界風速符合煙氣逆流長度經典經驗公式。也有學者從煙氣層的溫度和一氧化碳濃度角度判定當換氣率達到11.8次/h時,煙氣層具有足夠的穩定性,不會對人造成很大傷害,風速達到5m/s時,會出現吸穿現象;如果關閉防火門,則機械進、排風模式是*佳安全模式,如打開防火門,則自然進風、機械排風模式*安全。在電力艙事故后排煙研究中,郝冠宇論證了綜合管廊滅火采用密閉自熄的方式是有效可行的;1進1排比1進2排的模式有利于提高排煙效果。陳立清建議采用機械進風和排風或采用自然進風\機械排風。工程實踐中,黃勝元等提出非燃氣艙將2個防火分區作為獨立通風區間的方案,減少地面通風口數量,降低工程造價,減小日常維護管理,但未作試驗論證。

在探測報警方面,蔡宙、李陳瑩等對比點型感煙探測器、線型感溫電纜探測器、分布式光纖探測器和圖像型探測器試驗,分別考量了核電廠綜合管廊電纜密集交叉區、普通電力艙火災場景,建議考慮日常管廊實時溫度場監測,結合布置分布式光纖感溫火災探測器和圖像型火災探測器。

自從燃氣管線入廊被論證可行并納入《城市綜合管廊工程技術規范》后,燃氣艙火災安全吸引了眾多的研究。陳宏磊認為,為保險起見,應當保持火災區域為密閉空間,3min火災即可窒息熄滅;錢喜玲強調火災發生后的60s是逃生關鍵時間,建議逃生口應設置在離末端5~8m處;何樂平等探討了甲烷氣體探頭的布置位置要求。泄漏火災研究的結論為人員需要距離泄漏口10m以外避免高溫灼傷或熱輻射。張書豪等從泄漏擴散、火災消防、爆炸、監控、報警與通風等方面,綜述了燃氣艙安全研究成果。LIZexu等探討了燃氣艙火災蔓延特點;王雪梅等建議在頂棚每隔15m安裝氣體探測裝置時,將*后一個裝置、排風口盡可能靠近防火墻。

5城市綜合管廊消防規范要求

我國在統籌、指導新建、擴建和改建的綜合管廊指南是《城市綜合管廊工程技術規范》(GB50838—2015)(簡稱新版)。在消防安全方面,相對于《城市綜合管廊工程技術規范》(GB50838—2012)(簡稱舊版),新版規定更明確,同時體現了規劃先行、適度超前、因地制宜、統籌兼顧的原則。

世界范圍內,綜合管廊的消防設計應根據國情和實踐情況研究制定,當涉及具體消防設計時,不同的規范要求,乃至工程實施存在較大差異。在結構設計上,類似我國要求,西班牙Lezkairu綜合管廊工程、卡塔爾Lusail城市綜合管廊采用防火墻結合防火門劃分防火分區。但Lezkairu管廊分區長度達到400m;韓國20世紀建造的管廊甚至不設防火分區,某些研究者提出的建議也是*低500m。阿布扎比管廊設計手冊指出防火墻的設置根據地方當局的要求,可能需要,并非強制。中國臺灣的《共同管道工程設計規范》也未對設置防火分區作出明確要求。通風排煙設計上,我國推拉型縱向通風方式與日本的要求以及其他多數國家的實際案例基本一致。印度不設置防火分區,采用更為經濟的射流風機形式。相比我國執行事故后機械排煙,西班牙、馬來西亞則依據煙氣探測自動觸發排煙系統,進行火災事故中排煙。Lezkairu管廊要求排煙風機在400℃以內持續工作2h。

近年來,我國連續發布了《城市工程管線綜合規劃規范》、《城鎮綜合管廊監控與報警系統工程技術標準》、《城市地下綜合管廊建設規劃技術導則》和《城市地下綜合管廊運行維護及安全技術標準》,與此同時,一些行業協會,如中國工程建設標準化協會牽頭制定《城市地下綜合管廊管線工程技術規程》、《裝配式鋼結構地下綜合管廊工程技術規程》也正在編制,推動綜合管廊規范化進程。中國市政工程協會也立項了《城市綜合管廊消防設施技術規程》和《城市綜合管廊通風設施技術規程》等專業標準編制。

地方層面,各省級甚至地級市建設部門都在修訂適宜當地實施的綜合管廊規程,統計見表1。

表1我國地方綜合管廊工程設計地方標準

*近,海南省和深圳市分別頒布了《城市綜合管廊消防安全技術規程》、《城市綜合管廊消防系統工程技術規范》(征求意見稿),這是目前僅有的專業消防規范。

6 AcrelEMS-UT綜合管廊能效管理平臺

(1)平臺概述

AcrelEMS-UT綜合管廊能效管理平臺集電力監控、能源管理、電氣安全、照明控制、環境監測于一體,為建立可靠、安全、高效的綜合管廊管理體系提供數據支持,從數據采集、通信網絡、系統架構、聯動控制和綜合數據服務等方面的設計,解決了綜合管廊在管理過程中存在內部干擾性強、使用單位多及協調復雜的根本問題,大大提高了系統運行的可靠性和可管理性,提升了管廊基礎設施、環境和設備的使用和恢復效率。

(2)平臺組成

安科瑞城市地下綜合管廊能效管理系統是一個深度集成的自動化平臺,它集成了10KV/O.4KV變電站電力監控系統、變電所環境監控系統、智能馬達監控系統、電氣火災監控系統、消防設備電源系統、防火門監控系統、智能照明系統、消防應急照明和疏散指示系統。用戶可通過瀏覽器、手機APP獲取數據,通過一個平臺即可全局、整體的對管廊用電和用電安全進行進行集中監控、統一管理、統一調度,同時滿足管廊用電可靠、安全、穩定、高效、有序的要求。

(3)平臺拓撲圖

image.png

(4)平臺子系統

1)電力監控

電力監控主要針對10/0.4kV地面或地下變電所,對變電所高壓回路配置微機保護裝置及多功能儀表進行保護和監控,對0.4kV出線配置多功能計量儀表,用于測控出線回路電氣參數和用能情況,可實時監控高低壓供配電系統開關柜、變壓器微機保護測控裝置、發電機控制柜、ATS/STS、UPS,包括遙控、遙信、遙測、遙調、事故報警及記錄等。

image.png

2)環境監測

環境監測包括溫濕度、煙感溫感、積水浸水、可燃氣體濃度、門禁、視頻、空調、消防數據的采集、展示和預警,同時也可接入管廊艙室內的水泵和通風排煙風機等設備集成的第三方系統完成管廊環境綜合監控。

image.png

image.png

3)馬達監控

馬達監控實現對管廊電機的保護、遙測、遙信、遙控功能,實現對電機過載、短路、缺相、漏電等異常情況的保護、監測和報警。在需要的情況下可以設置聯動控制。

image.png

4)電氣安全

AcrelEMS-UT能效管理系統針對配電系統的電氣安全隱患配置相應的電氣火災傳感器、溫度傳感器,消防設備電源傳感器、防火門狀態傳感器,接入消防疏散照明以及指示燈具的狀態實時顯示,并且對UPS的蓄電池溫度、內阻進行實時監視,發生異常時通過聲光、短信、APP及時預警。

image.png

5)智能照明控制

  1. 防火分區單獨控制,分區內設置智能控制面板就地驅動器;開關驅動器連接消防報警系統,接收消防報警信息,強制打開驅動器回路。

  2. 廊內上方安裝智能照明傳感器,使人員進入管廊內自動開啟燈具,在管廊內停留燈具保持常亮,離開后燈具關閉。

  3. 除了現場的控制方式外,還可用電腦端實現集中控制,實時遠程監控當前區域的照明情況,必要時可遠程控制該區域的照明。

  4. 考慮現場模塊分布較廣,距離過長,除了現場的控制方式外,還可用電腦端實現集中控制,實時遠程監控當前區域的照明情況,必要時可遠程控制該區域的照明。

  5. 系統支持單控、區域控制、自動控制、感應控制、定時控制、場景控制、調光控制等多種控制方式,支持延時控制,避免同時亮燈負荷對配電系統造成沖擊。模塊不依賴系統,可獨立工作,每個模塊均自帶時間模塊,可根據經緯度自動識別日出日落時間實現自動控制功能。